Max Clique Problem
Background
The problem is in graph theory. A clique is a subset of vertices in a graph such each pair of them is adjacent to each other.
The max clique problem is given a graph \(G = (V,E)\), find the maximal clique in the graph. It is known to be in the NP-hard complexity class.
Solving the problem with classiq
Define the optimization problem
We encode each node
import networkx as nx
import numpy as np
import pyomo.environ as pyo
def define_max_clique_model(graph):
model = pyo.ConcreteModel()
# each x_i states if node i belongs to the cliques
model.x = pyo.Var(graph.nodes, domain=pyo.Binary)
x_variables = np.array(list(model.x.values()))
# define the complement adjacency matrix as the matrix where 1 exists for each non-existing edge
adjacency_matrix = nx.convert_matrix.to_numpy_array(graph, nonedge=0)
complement_adjacency_matrix = (
1
- nx.convert_matrix.to_numpy_array(graph, nonedge=0)
- np.identity(len(model.x))
)
# constraint that 2 nodes without edge in the graph cannot be chosen together
model.clique_constraint = pyo.Constraint(
expr=x_variables @ complement_adjacency_matrix @ x_variables == 0
)
# maximize the number of nodes in the chosen clique
model.value = pyo.Objective(expr=sum(x_variables), sense=pyo.maximize)
return model
Initialize the model with parameters
graph = nx.erdos_renyi_graph(7, 0.6, seed=79)
nx.draw_kamada_kawai(graph, with_labels=True)
max_clique_model = define_max_clique_model(graph)
Setting Up the Classiq Problem Instance
In order to solve the Pyomo model defined above, we use the Classiq combinatorial optimization engine. For the quantum part of the QAOA algorithm (QAOAConfig
) - define the number of repetitions (num_layers
):
from classiq import *
from classiq.applications.combinatorial_optimization import OptimizerConfig, QAOAConfig
qaoa_config = QAOAConfig(num_layers=20)
For the classical optimization part of the QAOA algorithm we define the maximum number of classical iterations (max_iteration
) and the \(\alpha\)-parameter (alpha_cvar
) for running CVaR-QAOA, an improved variation of the QAOA algorithm [3]:
optimizer_config = OptimizerConfig(max_iteration=1, alpha_cvar=1)
Lastly, we load the model, based on the problem and algorithm parameters, which we can use to solve the problem:
qmod = construct_combinatorial_optimization_model(
pyo_model=max_clique_model,
qaoa_config=qaoa_config,
optimizer_config=optimizer_config,
)
We also set the quantum backend we want to execute on:
from classiq.execution import ClassiqBackendPreferences
qmod = set_execution_preferences(
qmod, backend_preferences=ClassiqBackendPreferences(backend_name="simulator")
)
write_qmod(qmod, "max_clique")
Synthesizing the QAOA Circuit and Solving the Problem
We can now synthesize and view the QAOA circuit (ansatz) used to solve the optimization problem:
qprog = synthesize(qmod)
show(qprog)
Opening: https://platform.classiq.io/circuit/88ddbcbe-e798-4683-b7be-3052b1efec1a?version=0.41.0.dev39%2B79c8fd0855
We now solve the problem by calling the execute
function on the quantum program we have generated:
result = execute(qprog).result_value()
Optimization Results
We can also examine the statistics of the algorithm:
import pandas as pd
from classiq.applications.combinatorial_optimization import (
get_optimization_solution_from_pyo,
)
solution = get_optimization_solution_from_pyo(
max_clique_model, vqe_result=result, penalty_energy=qaoa_config.penalty_energy
)
optimization_result = pd.DataFrame.from_records(solution)
optimization_result.sort_values(by="cost", ascending=False).head(5)
probability | cost | solution | count | |
---|---|---|---|---|
115 | 0.001 | 4.0 | [0, 1, 1, 1, 0, 1, 0] | 1 |
90 | 0.003 | 4.0 | [1, 1, 1, 1, 0, 0, 0] | 3 |
107 | 0.001 | 3.0 | [0, 1, 0, 0, 0, 1, 1] | 1 |
111 | 0.001 | 3.0 | [1, 0, 0, 1, 1, 0, 0] | 1 |
89 | 0.003 | 3.0 | [0, 1, 1, 0, 0, 1, 0] | 3 |
Resulting Clique
solution = optimization_result.solution[optimization_result.cost.idxmax()]
solution_nodes = [v for v in graph.nodes if solution[v]]
solution_edges = [
(u, v) for u, v in graph.edges if u in solution_nodes and v in solution_nodes
]
nx.draw_kamada_kawai(graph, with_labels=True)
nx.draw_kamada_kawai(
graph,
with_labels=True,
nodelist=solution_nodes,
edgelist=solution_edges,
node_color="r",
edge_color="r",
)
And the histogram:
optimization_result.hist("cost", weights=optimization_result["probability"])
array([[<Axes: title={'center': 'cost'}>]], dtype=object)
Lastly, we can compare to the classical solution of the problem:
Classical optimizer results
from pyomo.opt import SolverFactory
solver = SolverFactory("couenne")
solver.solve(max_clique_model)
max_clique_model.display()
Model unknown
Variables:
x : Size=7, Index=x_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
0 : 0 : 1.0 : 1 : False : False : Binary
1 : 0 : 1.0 : 1 : False : False : Binary
2 : 0 : 1.0 : 1 : False : False : Binary
3 : 0 : 1.0 : 1 : False : False : Binary
4 : 0 : 0.0 : 1 : False : False : Binary
5 : 0 : 3.9960192291414966e-08 : 1 : False : False : Binary
6 : 0 : 0.0 : 1 : False : False : Binary
Objectives:
value : Size=1, Index=None, Active=True
Key : Active : Value
None : True : 4.0000000399601925
Constraints:
clique_constraint : Size=1
Key : Lower : Body : Upper
None : 0.0 : 7.992038458282993e-08 : 0.0
solution = [int(pyo.value(max_clique_model.x[i])) for i in graph.nodes]
solution_nodes = [v for v in graph.nodes if solution[v]]
solution_edges = [
(u, v) for u, v in graph.edges if u in solution_nodes and v in solution_nodes
]
nx.draw_kamada_kawai(graph, with_labels=True)
nx.draw_kamada_kawai(
graph,
with_labels=True,
nodelist=solution_nodes,
edgelist=solution_edges,
node_color="r",
edge_color="r",
)