Skip to content

Max Clique Problem

View on GitHub Experiment in the IDE

Background

The problem is in graph theory. A clique is a subset of vertices in a graph such each pair of them is adjacent to each other.

The max clique problem is given a graph \(G = (V,E)\), find the maximal clique in the graph. It is known to be in the NP-hard complexity class.

Solving the problem with classiq

Define the optimization problem

We encode each node

import networkx as nx
import numpy as np
import pyomo.environ as pyo


def define_max_clique_model(graph):
    model = pyo.ConcreteModel()

    # each x_i states if node i belongs to the cliques
    model.x = pyo.Var(graph.nodes, domain=pyo.Binary)
    x_variables = np.array(list(model.x.values()))

    # define the complement adjacency matrix as the matrix where 1 exists for each non-existing edge
    adjacency_matrix = nx.convert_matrix.to_numpy_array(graph, nonedge=0)
    complement_adjacency_matrix = (
        1
        - nx.convert_matrix.to_numpy_array(graph, nonedge=0)
        - np.identity(len(model.x))
    )

    # constraint that 2 nodes without edge in the graph cannot be chosen together
    model.clique_constraint = pyo.Constraint(
        expr=x_variables @ complement_adjacency_matrix @ x_variables == 0
    )

    # maximize the number of nodes in the chosen clique
    model.value = pyo.Objective(expr=sum(x_variables), sense=pyo.maximize)

    return model

Initialize the model with parameters

graph = nx.erdos_renyi_graph(7, 0.6, seed=79)
nx.draw_kamada_kawai(graph, with_labels=True)
max_clique_model = define_max_clique_model(graph)

png

Setting Up the Classiq Problem Instance

In order to solve the Pyomo model defined above, we use the Classiq combinatorial optimization engine. For the quantum part of the QAOA algorithm (QAOAConfig) - define the number of repetitions (num_layers):

from classiq import construct_combinatorial_optimization_model
from classiq.applications.combinatorial_optimization import OptimizerConfig, QAOAConfig

qaoa_config = QAOAConfig(num_layers=20)

For the classical optimization part of the QAOA algorithm we define the maximum number of classical iterations (max_iteration) and the \(\alpha\)-parameter (alpha_cvar) for running CVaR-QAOA, an improved variation of the QAOA algorithm [3]:

optimizer_config = OptimizerConfig(max_iteration=1, alpha_cvar=1)

Lastly, we load the model, based on the problem and algorithm parameters, which we can use to solve the problem:

qmod = construct_combinatorial_optimization_model(
    pyo_model=max_clique_model,
    qaoa_config=qaoa_config,
    optimizer_config=optimizer_config,
)

We also set the quantum backend we want to execute on:

from classiq import set_execution_preferences
from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences

backend_preferences = ExecutionPreferences(
    backend_preferences=ClassiqBackendPreferences(backend_name="simulator")
)

qmod = set_execution_preferences(qmod, backend_preferences)
from classiq import write_qmod

write_qmod(qmod, "max_clique")

Synthesizing the QAOA Circuit and Solving the Problem

We can now synthesize and view the QAOA circuit (ansatz) used to solve the optimization problem:

from classiq import show, synthesize

qprog = synthesize(qmod)
show(qprog)
Opening: https://platform.classiq.io/circuit/88ddbcbe-e798-4683-b7be-3052b1efec1a?version=0.41.0.dev39%2B79c8fd0855

We now solve the problem by calling the execute function on the quantum program we have generated:

from classiq import execute

res = execute(qprog).result()

Optimization Results

We can also examine the statistics of the algorithm:

import pandas as pd

from classiq.applications.combinatorial_optimization import (
    get_optimization_solution_from_pyo,
)

solution = get_optimization_solution_from_pyo(
    max_clique_model, vqe_result=res[0].value, penalty_energy=qaoa_config.penalty_energy
)
optimization_result = pd.DataFrame.from_records(solution)
optimization_result.sort_values(by="cost", ascending=False).head(5)
probability cost solution count
115 0.001 4.0 [0, 1, 1, 1, 0, 1, 0] 1
90 0.003 4.0 [1, 1, 1, 1, 0, 0, 0] 3
107 0.001 3.0 [0, 1, 0, 0, 0, 1, 1] 1
111 0.001 3.0 [1, 0, 0, 1, 1, 0, 0] 1
89 0.003 3.0 [0, 1, 1, 0, 0, 1, 0] 3

Resulting Clique

solution = optimization_result.solution[optimization_result.cost.idxmax()]
solution_nodes = [v for v in graph.nodes if solution[v]]
solution_edges = [
    (u, v) for u, v in graph.edges if u in solution_nodes and v in solution_nodes
]
nx.draw_kamada_kawai(graph, with_labels=True)
nx.draw_kamada_kawai(
    graph,
    with_labels=True,
    nodelist=solution_nodes,
    edgelist=solution_edges,
    node_color="r",
    edge_color="r",
)

png

And the histogram:

optimization_result.hist("cost", weights=optimization_result["probability"])
array([[<Axes: title={'center': 'cost'}>]], dtype=object)

png

Lastly, we can compare to the classical solution of the problem:

Classical optimizer results

from pyomo.opt import SolverFactory

solver = SolverFactory("couenne")
solver.solve(max_clique_model)

max_clique_model.display()
Model unknown

  Variables:
    x : Size=7, Index=x_index
        Key : Lower : Value                  : Upper : Fixed : Stale : Domain
          0 :     0 :                    1.0 :     1 : False : False : Binary
          1 :     0 :                    1.0 :     1 : False : False : Binary
          2 :     0 :                    1.0 :     1 : False : False : Binary
          3 :     0 :                    1.0 :     1 : False : False : Binary
          4 :     0 :                    0.0 :     1 : False : False : Binary
          5 :     0 : 3.9960192291414966e-08 :     1 : False : False : Binary
          6 :     0 :                    0.0 :     1 : False : False : Binary

  Objectives:
    value : Size=1, Index=None, Active=True
        Key  : Active : Value
        None :   True : 4.0000000399601925

  Constraints:
    clique_constraint : Size=1
        Key  : Lower : Body                  : Upper
        None :   0.0 : 7.992038458282993e-08 :   0.0
solution = [int(pyo.value(max_clique_model.x[i])) for i in graph.nodes]
solution_nodes = [v for v in graph.nodes if solution[v]]
solution_edges = [
    (u, v) for u, v in graph.edges if u in solution_nodes and v in solution_nodes
]
nx.draw_kamada_kawai(graph, with_labels=True)
nx.draw_kamada_kawai(
    graph,
    with_labels=True,
    nodelist=solution_nodes,
    edgelist=solution_edges,
    node_color="r",
    edge_color="r",
)

png