Skip to content

Quantum Sine and Cosine Transforms

View on GitHub

The quantum Sine and Cosine transforms functions are the quantum analog for the discrete Sine and Cosine transforms. The unitary versions of the type I and type II transforms are defined as follows:

\[{\rm DCT}^{(1)}_{jk}(N) = \alpha_{jk}\sqrt{\frac{2}{N-1}} \cos\left(\frac{\pi j k}{N-1}\right), \qquad \alpha_{jk} = \left\{ \begin{array}{l l} \frac{1}{\sqrt{2}} & j = 0,N-1 ,\\ \frac{1}{\sqrt{2}} & k = 0,N-1 ,\\ 1 & \text{else} \end{array} \right., \qquad j,k = 0\dots,N-1\]
\[{\rm DST}^{(1)}_{jk}(N) = \sqrt{\frac{2}{N+1}} \sin\left(\frac{\pi j k}{N+1}\right), \qquad j,k = 0\dots,N-1\]
\[{\rm DCT}^{(2)}_{jk}(N) = \alpha_{jk}\sqrt{\frac{2}{N}} \cos\left(\frac{\pi (j+1/2) k }{N}\right), \qquad \alpha_{jk} = \left\{ \begin{array}{l l} \frac{1}{\sqrt{2}} & k = 0 ,\\ 1 & \text{else} \end{array} \right., \qquad j,k = 0\dots,N-1\]
\[{\rm DST}^{(2)}_{jk}(N) = \alpha_{jk} \sqrt{\frac{2}{N}} \sin\left(\frac{\pi (j+1/2) (k+1)}{N}\right), \qquad \alpha_{jk} = \left\{ \begin{array}{l l} \frac{1}{\sqrt{2}} & k = N-1 ,\\ 1 & \text{else} \end{array} \right., \qquad j,k = 0\dots,N-1\]

The open library includes four functions, following the implementation in Ref. [1]:

QCT and QST of type I

Function: qct_qst_type1

Arguments:

  • x: QArray[QBit]

The x quantum argument is the quantum state on which we apply the transforms, according to the following unitary on \(n\equiv\)x.len qubits:

\[\left( \begin{array}{ccc|c} {} &{} &{} \\ {}&{\rm DCT}^{(1)}(2^{n-1}+1) & {}& 0\\ {} &{} &{} \\ \hline {} & 0 & {} & i{\rm DST}^{(1)}(2^{n-1}-1) \end{array} \right)\]

Example

import numpy as np

from classiq import (
    H,
    Output,
    QNum,
    allocate,
    create_model,
    execute,
    qct_qst_type1,
    qfunc,
)
from classiq.execution import (
    ClassiqBackendPreferences,
    ClassiqSimulatorBackendNames,
    ExecutionPreferences,
)

NUM_QUBITS = 4
execution_preferences = ExecutionPreferences(
    num_shots=1,
    backend_preferences=ClassiqBackendPreferences(
        backend_name=ClassiqSimulatorBackendNames.SIMULATOR_STATEVECTOR
    ),
)


np.random.seed(123)
cos_data = np.random.rand(2 ** (NUM_QUBITS - 1) + 1)
cos_data = cos_data / np.linalg.norm(cos_data)
sin_data = np.random.rand(2 ** (NUM_QUBITS - 1) - 1)
sin_data = sin_data / np.linalg.norm(sin_data)

combined_data = np.append(cos_data / np.sqrt(2), sin_data / np.sqrt(2))
from classiq import prepare_amplitudes


@qfunc
def main(x: Output[QNum]):

    prepare_amplitudes(combined_data.tolist(), 0.0, x)
    qct_qst_type1(x)


qmod = create_model(main, execution_preferences=execution_preferences)
from classiq import synthesize, write_qmod

write_qmod(qmod, "qct_qst_type1", decimal_precision=15)
qprog = synthesize(qmod)
res = execute(qprog).result()
qct_data = np.zeros(2 ** (NUM_QUBITS - 1) + 1).astype(complex)
qst_data = np.zeros(2 ** (NUM_QUBITS - 1) - 1).astype(complex)
for sample in res[0].value.parsed_state_vector:
    value = int(sample.state["x"])
    if value < 2 ** (NUM_QUBITS - 1) + 1:
        qct_data[value] += sample.amplitude
    else:
        qst_data[int(value - 2 ** (NUM_QUBITS - 1) - 1)] += sample.amplitude
def dct1(n):
    dct = np.array(
        [
            [
                np.cos(np.pi * j * k / (n - 1))
                * (np.sqrt(1 / 2) if j == 0 or j == n - 1 else 1)
                * (np.sqrt(1 / 2) if k == 0 or k == n - 1 else 1)
                for j in range(n)
            ]
            for k in range(n)
        ]
    ) / np.sqrt((n - 1) / 2)
    return dct


def dst1(n):
    dst = np.array(
        [
            [np.sin(np.pi * (j + 1) * (k + 1) / (n + 1)) for j in range(n)]
            for k in range(n)
        ]
    ) / np.sqrt((n + 1) / 2)

    return dst
global_phase = np.exp(1j * np.angle(qct_data[0]))
measured_cos_res = np.real(qct_data / global_phase)
expected_cos_res = (dct1(2 ** (NUM_QUBITS - 1) + 1) @ cos_data) / np.sqrt(2)
print("measured result:", measured_cos_res)
print("expected result:", expected_cos_res)

assert np.allclose(measured_cos_res, expected_cos_res, atol=0.01)
measured result: [ 0.64936034 -0.13662084  0.02159456  0.08089956  0.06722088  0.18669631
  0.02254746 -0.01198615  0.1123771 ]
expected result: [ 0.64936034 -0.13662084  0.02159456  0.08089956  0.06722088  0.18669631
  0.02254746 -0.01198615  0.1123771 ]
global_phase = np.exp(1j * np.angle(qst_data[0]))
measured_sin_res = np.real(qst_data / global_phase)
expected_sin_res = (dst1(2 ** (NUM_QUBITS - 1) - 1) @ sin_data) / np.sqrt(2)
print("measured result:", measured_sin_res)
print("expected result:", expected_sin_res)

assert np.allclose(measured_sin_res, expected_sin_res, atol=0.01)
measured result: [ 0.57556991  0.04712138  0.22433696 -0.27513447  0.17796799  0.07685908
  0.05378552]
expected result: [ 0.57556991  0.04712138  0.22433696 -0.27513447  0.17796799  0.07685908
  0.05378552]

QCT and QST of type II

Function: qct_qst_type2

Arguments:

  • x: QArray[QBit],

  • q: QBit

The x quantum argument is the quantum state on which we apply the transforms, whereas the single q qubit indicates the block, according to the following unitary on \(n+1\equiv\) x.len \(+1\) qubits:

\[\left( \begin{array}{c|c} {\rm DCT}^{(2)}(2^{n-1}) & 0\\ \hline 0 & -{\rm DST}^{(2)}(2^{n-1}) \end{array} \right)\]

Function: qct_type2

Arguments:

  • x: QArray[QBit]: the quantum state on which we apply \({\rm DCT}^{(2)}\).

Function: qst_type2

Arguments:

  • x: QArray[QBit]: the quantum state on which we apply \({\rm DST}^{(2)}\).

Example

import numpy as np

from classiq import (
    Output,
    QArray,
    QBit,
    create_model,
    execute,
    invert,
    prepare_amplitudes,
    qct_qst_type2,
    qfunc,
)
from classiq.execution import (
    ClassiqBackendPreferences,
    ClassiqSimulatorBackendNames,
    ExecutionPreferences,
)

NUM_QUBITS = 4
cos_sin_data = np.random.rand(2 ** (NUM_QUBITS - 1))
cos_sin_data = cos_sin_data / np.linalg.norm(cos_sin_data)
@qfunc
def main(x: Output[QNum], q: Output[QBit]):

    prepare_amplitudes(cos_sin_data.tolist(), 0.0, x)
    allocate(1, q)
    H(q)
    qct_qst_type2(x, q)


qmod = create_model(main, execution_preferences=execution_preferences)
write_qmod(qmod, "qct_qst_type2", decimal_precision=15)
qprog = synthesize(qmod)
res = execute(qprog).result()
qct_data = np.zeros(2 ** (NUM_QUBITS - 1)).astype(complex)
qst_data = np.zeros(2 ** (NUM_QUBITS - 1)).astype(complex)
for sample in res[0].value.parsed_state_vector:
    if sample.state["q"] == 0:
        qct_data[int(sample.state["x"])] += sample.amplitude
    else:
        qst_data[int(sample.state["x"])] += sample.amplitude
def dct2(n):
    dct = np.array(
        [
            [
                np.cos(np.pi * j * (k + 1 / 2) / n) * (np.sqrt(1 / 2) if j == 0 else 1)
                for j in range(n)
            ]
            for k in range(n)
        ]
    ) / np.sqrt(n / 2)
    return dct.T


def dst2(n):
    dst = np.array(
        [
            [
                np.sin(np.pi * (j + 1) * (k + 1 / 2) / n)
                * (np.sqrt(1 / 2) if j == n - 1 else 1)
                for j in range(n)
            ]
            for k in range(n)
        ]
    ) / np.sqrt(n / 2)
    return dst.T
global_phase = np.exp(1j * np.angle(qct_data[0]))
measured_cos_res = np.real(qct_data / global_phase)
expected_cos_res = (dct2(2 ** (NUM_QUBITS - 1)) @ cos_sin_data) / np.sqrt(2)
print("measured result:", measured_cos_res)
print("expected result:", expected_cos_res)

assert np.allclose(measured_cos_res, expected_cos_res, atol=0.01)
measured result: [ 0.65104654 -0.23305325 -0.11473439  0.02595719 -0.04930425  0.03323495
  0.06553173  0.01252819]
expected result: [ 0.65104654 -0.23305325 -0.11473439  0.02595719 -0.04930425  0.03323495
  0.06553173  0.01252819]
global_phase = np.exp(1j * np.angle(qst_data[0]))
measured_sin_res = np.real(qst_data / global_phase)
expected_sin_res = (dst2(2 ** (NUM_QUBITS - 1)) @ cos_sin_data) / np.sqrt(2)
print("measured result:", measured_sin_res)
print("expected result:", expected_sin_res)

assert np.allclose(measured_sin_res, expected_sin_res, atol=0.01)
measured result: [ 0.63981132 -0.2180174   0.13530848 -0.08552637  0.02796936 -0.03450769
  0.12370004 -0.01455965]
expected result: [ 0.63981132 -0.2180174   0.13530848 -0.08552637  0.02796936 -0.03450769
  0.12370004 -0.01455965]
from classiq import qct_type2


@qfunc
def main(x: Output[QNum]):

    prepare_amplitudes(cos_sin_data.tolist(), 0.0, x)
    qct_type2(x)


qmod = create_model(main, execution_preferences=execution_preferences)

write_qmod(qmod, "qct_type2", decimal_precision=15)
qprog = synthesize(qmod)
res = execute(qprog).result()
qct_data = np.zeros(2 ** (NUM_QUBITS - 1)).astype(complex)

for sample in res[0].value.parsed_state_vector:
    qct_data[int(sample.state["x"])] += sample.amplitude

global_phase = np.exp(1j * np.angle(qct_data[0]))
measured_cos_res = np.real(qct_data / global_phase)
expected_cos_res = dct2(2 ** (NUM_QUBITS - 1)) @ cos_sin_data
print("measured result:", measured_cos_res)
print("expected result:", expected_cos_res)

assert np.allclose(measured_cos_res, expected_cos_res, atol=0.01)
measured result: [ 0.92071884 -0.32958707 -0.16225893  0.03670901 -0.06972674  0.04700132
  0.09267587  0.01771754]
expected result: [ 0.92071884 -0.32958707 -0.16225893  0.03670901 -0.06972674  0.04700132
  0.09267587  0.01771754]
from classiq import qst_type2


@qfunc
def main(x: Output[QNum]):
    prepare_amplitudes(cos_sin_data.tolist(), 0.0, x)
    qst_type2(x)


qmod = create_model(main, execution_preferences=execution_preferences)

write_qmod(qmod, "qst_type2", decimal_precision=15)
qprog = synthesize(qmod)
res = execute(qprog).result()
qst_data = np.zeros(2 ** (NUM_QUBITS - 1)).astype(complex)

for sample in res[0].value.parsed_state_vector:
    qst_data[int(sample.state["x"])] += sample.amplitude

global_phase = np.exp(1j * np.angle(qst_data[0]))
measured_sin_res = np.real(qst_data / global_phase)
expected_sin_res = dst2(2 ** (NUM_QUBITS - 1)) @ cos_sin_data
print("measured result:", measured_sin_res)
print("expected result:", expected_sin_res)

assert np.allclose(measured_sin_res, expected_sin_res, atol=0.01)
measured result: [ 0.90482984 -0.30832317  0.19135509 -0.12095255  0.03955464 -0.04880124
  0.17493827 -0.02059046]
expected result: [ 0.90482984 -0.30832317  0.19135509 -0.12095255  0.03955464 -0.04880124
  0.17493827 -0.02059046]

References

[1]: Klappenecker, A., & Rotteler M., "Discrete Cosine Transforms on Quantum Computers".