Classical Types
This is a list of the classical types that are built-in in Qmod.
For more information regarding classical types see: classical types.
structs
Classes:
| Name | Description | 
|---|---|
| CombinatorialOptimizationSolution |  | 
| GaussianModel |  | 
| IndexedPauli | A single-qubit Pauli matrix on a specific qubit given by its index. | 
| LogNormalModel |  | 
| PauliTerm | A term in a Hamiltonian, represented as a product of single-qubit Pauli matrices. | 
| SparsePauliOp | Represents a collection of sparse Pauli operators. | 
| SparsePauliTerm | A term in the Hamiltonian, represented as a sparse product of single-qubit Pauli | 
BUILTIN_STRUCT_DECLARATIONS
BUILTIN_STRUCT_DECLARATIONS = {
    (__name__): (
        StructDeclaration(
            name=__name__,
            variables={
                (name): (convert(type, nested=True))
                for field in (fields(struct_decl))
            },
        )
    )
    for struct_decl in (values())
    if is_dataclass(struct_decl)
}
CombinatorialOptimizationSolution
CombinatorialOptimizationSolution(
    probability: CReal,
    cost: CReal,
    solution: CArray[CInt],
    count: CInt,
)
Attributes:
| Name | Type | Description | 
|---|---|---|
| cost | CReal |  | 
| count | CInt |  | 
| probability | CReal |  | 
| solution | CArray[CInt] |  | 
cost
cost: CReal
count
count: CInt
probability
probability: CReal
solution
solution: CArray[CInt]
GaussianModel
GaussianModel(
    num_qubits: CInt,
    normal_max_value: CReal,
    default_probabilities: CArray[CReal],
    rhos: CArray[CReal],
    loss: CArray[CInt],
    min_loss: CInt,
)
Attributes:
| Name | Type | Description | 
|---|---|---|
| default_probabilities | CArray[CReal] |  | 
| loss | CArray[CInt] |  | 
| min_loss | CInt |  | 
| normal_max_value | CReal |  | 
| num_qubits | CInt |  | 
| rhos | CArray[CReal] |  | 
default_probabilities
default_probabilities: CArray[CReal]
loss
loss: CArray[CInt]
min_loss
min_loss: CInt
normal_max_value
normal_max_value: CReal
num_qubits
num_qubits: CInt
rhos
rhos: CArray[CReal]
IndexedPauli
IndexedPauli(pauli: Pauli, index: CInt)
LogNormalModel
LogNormalModel(num_qubits: CInt, mu: CReal, sigma: CReal)
Attributes:
| Name | Type | Description | 
|---|---|---|
| mu | CReal |  | 
| num_qubits | CInt |  | 
| sigma | CReal |  | 
mu
mu: CReal
num_qubits
num_qubits: CInt
sigma
sigma: CReal
PauliTerm
PauliTerm(pauli: CArray[Pauli], coefficient: CReal)
A term in a Hamiltonian, represented as a product of single-qubit Pauli matrices.
Attributes:
| Name | Type | Description | 
|---|---|---|
| pauli | CArray[Pauli] | The list of the chosen Pauli operators in the term, corresponds to a product of them. | 
| coefficient | CReal | The coefficient of the term (floating number). | 
coefficient
coefficient: CReal
SparsePauliOp
SparsePauliOp(
    terms: list[SparsePauliTerm], num_qubits: int
)
Represents a collection of sparse Pauli operators.
Attributes:
| Name | Type | Description | 
|---|---|---|
| terms | CArray[SparsePauliTerm] | The list of chosen sparse Pauli terms, corresponds to a product of them. (See: SparsePauliTerm) | 
| num_qubits | CInt | The number of qubits in the Hamiltonian. | 
num_qubits
num_qubits: int
SparsePauliTerm
SparsePauliTerm(
    paulis: CArray[IndexedPauli], coefficient: CReal
)
A term in the Hamiltonian, represented as a sparse product of single-qubit Pauli matrices.
Attributes: paulis (CArray[IndexedPauli]): The list of chosen sparse Pauli operators in the term corresponds to a product of them. (See IndexedPauli) coefficient (CReal): The coefficient of the term (floating number).
Attributes:
| Name | Type | Description | 
|---|---|---|
| coefficient | CReal |  | 
| paulis | CArray[IndexedPauli] |  | 
coefficient
coefficient: CReal
constants
enums
Classes:
| Name | Description | 
|---|---|
| Optimizer |  | 
| Pauli | Enumeration for the Pauli matrices used in quantum computing. | 
BUILTIN_ENUM_DECLARATIONS
BUILTIN_ENUM_DECLARATIONS = {
    (__name__): (
        EnumDeclaration(
            name=__name__,
            members={
                (name): (value) for enum_val in enum_def
            },
        )
    )
    for enum_def in (values())
    if isinstance(enum_def, type)
    and issubclass(enum_def, IntEnum)
    and enum_def is not IntEnum
}
Optimizer
Pauli
              Bases: IntEnum
Enumeration for the Pauli matrices used in quantum computing.
Represents the four Pauli matrices used in quantum mechanics: Identity (I), X, Y, and Z operators. The Pauli matrices are defined as:
Attributes:
| Name | Type | Description | 
|---|---|---|
| I | int | The identity operator (value 0). | 
| X | int | The Pauli-X operator (value 1). | 
| Y | int | The Pauli-Y operator (value 2). | 
| Z | int | The Pauli-Z operator (value 3). | 
I
I = 0
X
X = 1
Y
Y = 2
Z
Z = 3