Classical types
This is a list of the classical types that are built-in in Qmod
.
For more information regarding classical types see: classical types.
structs
Classes:
Name | Description |
---|---|
ChemistryAtom |
|
CombinatorialOptimizationSolution |
|
FinanceFunction |
|
FockHamiltonianProblem |
|
GaussianModel |
|
LadderOp |
|
LadderTerm |
|
LogNormalModel |
|
Molecule |
|
MoleculeProblem |
|
PauliTerm |
A term in a Hamiltonian, represented as a product of Pauli operators. |
Position |
|
QSVMFeatureMapPauli |
|
QsvmResult |
|
BUILTIN_STRUCT_DECLARATIONS
BUILTIN_STRUCT_DECLARATIONS = {
__name__: StructDeclaration(
name=__name__,
variables={
name: convert(type)
for field in fields(struct_decl)
},
)
for struct_decl in values()
if is_dataclass(struct_decl)
}
ChemistryAtom
ChemistryAtom(element: CInt, position: Position)
CombinatorialOptimizationSolution
CombinatorialOptimizationSolution(
probability: CReal,
cost: CReal,
solution: CArray[CInt],
count: CInt,
)
Attributes:
Name | Type | Description |
---|---|---|
cost |
CReal
|
|
count |
CInt
|
|
probability |
CReal
|
|
solution |
CArray[CInt]
|
|
cost
cost: CReal
count
count: CInt
probability
probability: CReal
solution
solution: CArray[CInt]
FinanceFunction
FinanceFunction(
f: CInt,
threshold: CReal,
larger: CBool,
polynomial_degree: CInt,
use_chebyshev_polynomial_approximation: CBool,
tail_probability: CReal,
)
Attributes:
Name | Type | Description |
---|---|---|
f |
CInt
|
|
larger |
CBool
|
|
polynomial_degree |
CInt
|
|
tail_probability |
CReal
|
|
threshold |
CReal
|
|
use_chebyshev_polynomial_approximation |
CBool
|
|
f
f: CInt
larger
larger: CBool
polynomial_degree
polynomial_degree: CInt
tail_probability
tail_probability: CReal
threshold
threshold: CReal
use_chebyshev_polynomial_approximation
use_chebyshev_polynomial_approximation: CBool
FockHamiltonianProblem
FockHamiltonianProblem(
mapping: CInt,
z2_symmetries: CBool,
terms: CArray[LadderTerm],
num_particles: CArray[CInt],
)
Attributes:
Name | Type | Description |
---|---|---|
mapping |
CInt
|
|
num_particles |
CArray[CInt]
|
|
terms |
CArray[LadderTerm]
|
|
z2_symmetries |
CBool
|
|
mapping
mapping: CInt
num_particles
num_particles: CArray[CInt]
z2_symmetries
z2_symmetries: CBool
GaussianModel
GaussianModel(
num_qubits: CInt,
normal_max_value: CReal,
default_probabilities: CArray[CReal],
rhos: CArray[CReal],
loss: CArray[CInt],
min_loss: CInt,
)
Attributes:
Name | Type | Description |
---|---|---|
default_probabilities |
CArray[CReal]
|
|
loss |
CArray[CInt]
|
|
min_loss |
CInt
|
|
normal_max_value |
CReal
|
|
num_qubits |
CInt
|
|
rhos |
CArray[CReal]
|
|
default_probabilities
default_probabilities: CArray[CReal]
loss
loss: CArray[CInt]
min_loss
min_loss: CInt
normal_max_value
normal_max_value: CReal
num_qubits
num_qubits: CInt
rhos
rhos: CArray[CReal]
LadderOp
LadderOp(op: LadderOperator, index: CInt)
LadderTerm
LadderTerm(coefficient: CReal, ops: CArray[LadderOp])
Attributes:
Name | Type | Description |
---|---|---|
coefficient |
CReal
|
|
ops |
CArray[LadderOp]
|
|
coefficient
coefficient: CReal
LogNormalModel
LogNormalModel(num_qubits: CInt, mu: CReal, sigma: CReal)
Attributes:
Name | Type | Description |
---|---|---|
mu |
CReal
|
|
num_qubits |
CInt
|
|
sigma |
CReal
|
|
mu
mu: CReal
num_qubits
num_qubits: CInt
sigma
sigma: CReal
Molecule
Molecule(
atoms: CArray[ChemistryAtom], spin: CInt, charge: CInt
)
Attributes:
Name | Type | Description |
---|---|---|
atoms |
CArray[ChemistryAtom]
|
|
charge |
CInt
|
|
spin |
CInt
|
|
MoleculeProblem
MoleculeProblem(
mapping: CInt,
z2_symmetries: CBool,
molecule: Molecule,
freeze_core: CBool,
remove_orbitals: CArray[CInt],
)
Attributes:
Name | Type | Description |
---|---|---|
freeze_core |
CBool
|
|
mapping |
CInt
|
|
molecule |
Molecule
|
|
remove_orbitals |
CArray[CInt]
|
|
z2_symmetries |
CBool
|
|
freeze_core
freeze_core: CBool
mapping
mapping: CInt
remove_orbitals
remove_orbitals: CArray[CInt]
z2_symmetries
z2_symmetries: CBool
PauliTerm
PauliTerm(pauli: CArray[Pauli], coefficient: CReal)
A term in a Hamiltonian, represented as a product of Pauli operators.
Attributes:
Name | Type | Description |
---|---|---|
pauli |
CArray[Pauli]
|
The list of the chosen Pauli operators in the term, corresponds to a product of them. |
coefficient |
CReal
|
The coefficient of the term (floating number). |
Attributes:
Name | Type | Description |
---|---|---|
coefficient |
CReal
|
|
pauli |
CArray[Pauli]
|
|
coefficient
coefficient: CReal
Position
Position(x: CReal, y: CReal, z: CReal)
QSVMFeatureMapPauli
QSVMFeatureMapPauli(
feature_dimension: CInt,
reps: CInt,
entanglement: CInt,
alpha: CReal,
paulis: CArray[CArray[Pauli]],
)
Attributes:
Name | Type | Description |
---|---|---|
alpha |
CReal
|
|
entanglement |
CInt
|
|
feature_dimension |
CInt
|
|
paulis |
CArray[CArray[Pauli]]
|
|
reps |
CInt
|
|
alpha
alpha: CReal
entanglement
entanglement: CInt
feature_dimension
feature_dimension: CInt
reps
reps: CInt
QsvmResult
QsvmResult(
test_score: CReal, predicted_labels: CArray[CReal]
)
Attributes:
Name | Type | Description |
---|---|---|
predicted_labels |
CArray[CReal]
|
|
test_score |
CReal
|
|
predicted_labels
predicted_labels: CArray[CReal]
test_score
test_score: CReal
constants
enums
Classes:
Name | Description |
---|---|
Element |
|
FermionMapping |
|
FinanceFunctionType |
|
LadderOperator |
|
Optimizer |
|
Pauli |
Enumeration for the Pauli matrices used in quantum computing. |
QSVMFeatureMapEntanglement |
|
BUILTIN_ENUM_DECLARATIONS
BUILTIN_ENUM_DECLARATIONS = {__name__: EnumDeclaration(name=__name__, members={name: _nOQmfor enum_val in enum_def})for enum_def in values() if isinstance(enum_def, type) and issubclass(enum_def, IntEnum) and enum_def is not IntEnum}
Element
Bases: IntEnum
Attributes:
Name | Type | Description |
---|---|---|
Ac |
|
|
Ag |
|
|
Al |
|
|
Am |
|
|
Ar |
|
|
As |
|
|
At |
|
|
Au |
|
|
B |
|
|
Ba |
|
|
Be |
|
|
Bh |
|
|
Bi |
|
|
Bk |
|
|
Br |
|
|
C |
|
|
Ca |
|
|
Cd |
|
|
Ce |
|
|
Cf |
|
|
Cl |
|
|
Cm |
|
|
Cn |
|
|
Co |
|
|
Cr |
|
|
Cs |
|
|
Cu |
|
|
Db |
|
|
Ds |
|
|
Dy |
|
|
Er |
|
|
Es |
|
|
Eu |
|
|
F |
|
|
Fe |
|
|
Fl |
|
|
Fm |
|
|
Fr |
|
|
Ga |
|
|
Gd |
|
|
Ge |
|
|
H |
|
|
He |
|
|
Hf |
|
|
Hg |
|
|
Ho |
|
|
Hs |
|
|
I |
|
|
In |
|
|
Ir |
|
|
K |
|
|
Kr |
|
|
La |
|
|
Li |
|
|
Lr |
|
|
Lu |
|
|
Lv |
|
|
Mc |
|
|
Md |
|
|
Mg |
|
|
Mn |
|
|
Mo |
|
|
Mt |
|
|
N |
|
|
Na |
|
|
Nb |
|
|
Nd |
|
|
Ne |
|
|
Nh |
|
|
Ni |
|
|
No |
|
|
Np |
|
|
O |
|
|
Og |
|
|
Os |
|
|
P |
|
|
Pa |
|
|
Pb |
|
|
Pd |
|
|
Pm |
|
|
Po |
|
|
Pr |
|
|
Pt |
|
|
Pu |
|
|
Ra |
|
|
Rb |
|
|
Re |
|
|
Rf |
|
|
Rg |
|
|
Rh |
|
|
Rn |
|
|
Ru |
|
|
S |
|
|
Sb |
|
|
Sc |
|
|
Se |
|
|
Sg |
|
|
Si |
|
|
Sm |
|
|
Sn |
|
|
Sr |
|
|
Ta |
|
|
Tb |
|
|
Tc |
|
|
Te |
|
|
Th |
|
|
Ti |
|
|
Tl |
|
|
Tm |
|
|
Ts |
|
|
U |
|
|
V |
|
|
W |
|
|
Xe |
|
|
Y |
|
|
Yb |
|
|
Zn |
|
|
Zr |
|
Ac
Ac = 88
Ag
Ag = 46
Al
Al = 12
Am
Am = 94
Ar
Ar = 17
As
As = 32
At
At = 84
Au
Au = 78
B
B = 4
Ba
Ba = 55
Be
Be = 3
Bh
Bh = 106
Bi
Bi = 82
Bk
Bk = 96
Br
Br = 34
C
C = 5
Ca
Ca = 19
Cd
Cd = 47
Ce
Ce = 57
Cf
Cf = 97
Cl
Cl = 16
Cm
Cm = 95
Cn
Cn = 111
Co
Co = 26
Cr
Cr = 23
Cs
Cs = 54
Cu
Cu = 28
Db
Db = 104
Ds
Ds = 109
Dy
Dy = 65
Er
Er = 67
Es
Es = 98
Eu
Eu = 62
F
F = 8
Fe
Fe = 25
Fl
Fl = 113
Fm
Fm = 99
Fr
Fr = 86
Ga
Ga = 30
Gd
Gd = 63
Ge
Ge = 31
H
H = 0
He
He = 1
Hf
Hf = 71
Hg
Hg = 79
Ho
Ho = 66
Hs
Hs = 107
I
I = 52
In
In = 48
Ir
Ir = 76
K
K = 18
Kr
Kr = 35
La
La = 56
Li
Li = 2
Lr
Lr = 102
Lu
Lu = 70
Lv
Lv = 115
Mc
Mc = 114
Md
Md = 100
Mg
Mg = 11
Mn
Mn = 24
Mo
Mo = 41
Mt
Mt = 108
N
N = 6
Na
Na = 10
Nb
Nb = 40
Nd
Nd = 59
Ne
Ne = 9
Nh
Nh = 112
Ni
Ni = 27
No
No = 101
Np
Np = 92
O
O = 7
Og
Og = 117
Os
Os = 75
P
P = 14
Pa
Pa = 90
Pb
Pb = 81
Pd
Pd = 45
Pm
Pm = 60
Po
Po = 83
Pr
Pr = 58
Pt
Pt = 77
Pu
Pu = 93
Ra
Ra = 87
Rb
Rb = 36
Re
Re = 74
Rf
Rf = 103
Rg
Rg = 110
Rh
Rh = 44
Rn
Rn = 85
Ru
Ru = 43
S
S = 15
Sb
Sb = 50
Sc
Sc = 20
Se
Se = 33
Sg
Sg = 105
Si
Si = 13
Sm
Sm = 61
Sn
Sn = 49
Sr
Sr = 37
Ta
Ta = 72
Tb
Tb = 64
Tc
Tc = 42
Te
Te = 51
Th
Th = 89
Ti
Ti = 21
Tl
Tl = 80
Tm
Tm = 68
Ts
Ts = 116
U
U = 91
V
V = 22
W
W = 73
Xe
Xe = 53
Y
Y = 38
Yb
Yb = 69
Zn
Zn = 29
Zr
Zr = 39
FermionMapping
Bases: IntEnum
Attributes:
Name | Type | Description |
---|---|---|
BRAVYI_KITAEV |
|
|
FAST_BRAVYI_KITAEV |
|
|
JORDAN_WIGNER |
|
|
PARITY |
|
BRAVYI_KITAEV
BRAVYI_KITAEV = 2
FAST_BRAVYI_KITAEV
FAST_BRAVYI_KITAEV = 3
JORDAN_WIGNER
JORDAN_WIGNER = 0
PARITY
PARITY = 1
FinanceFunctionType
Bases: IntEnum
Attributes:
Name | Type | Description |
---|---|---|
EUROPEAN_CALL_OPTION |
|
|
SHORTFALL |
|
|
VAR |
|
|
X_SQUARE |
|
EUROPEAN_CALL_OPTION
EUROPEAN_CALL_OPTION = 3
SHORTFALL
SHORTFALL = 1
VAR
VAR = 0
X_SQUARE
X_SQUARE = 2
LadderOperator
Optimizer
Bases: IntEnum
Attributes:
Name | Type | Description |
---|---|---|
ADAM |
|
|
COBYLA |
|
|
L_BFGS_B |
|
|
NELDER_MEAD |
|
|
SPSA |
|
ADAM
ADAM = 5
COBYLA
COBYLA = 1
L_BFGS_B
L_BFGS_B = 3
NELDER_MEAD
NELDER_MEAD = 4
SPSA
SPSA = 2
Pauli
Bases: IntEnum
Enumeration for the Pauli matrices used in quantum computing.
The Pauli matrices are fundamental operations in quantum computing, and this enum assigns integer values to represent each matrix.
Attributes:
Name | Type | Description |
---|---|---|
I |
I (int): Identity matrix, represented by the integer 0. |
|
X |
X (int): Pauli-X matrix, represented by the integer 1. |
|
Y |
Y (int): Pauli-Y matrix, represented by the integer 2. |
|
Z |
Z (int): Pauli-Z matrix, represented by the integer 3. |
I
I = 0
I (int): Identity matrix, represented by the integer 0.
\(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
X
X = 1
X (int): Pauli-X matrix, represented by the integer 1.
\(X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
Y
Y = 2
Y (int): Pauli-Y matrix, represented by the integer 2.
\(Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
Z
Z = 3
Z (int): Pauli-Z matrix, represented by the integer 3.
\(Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)