Classiq code for discrete quantum walk
This notebook shows how to generate data for discrete quantum walk using classiq
.
import time
from classiq import *
SIZE = 6
MAX_WIDTH = 40
constraints = Constraints(optimization_parameter="cx", max_width=MAX_WIDTH)
# define increment circuit as an MCX cascade
@qfunc
def increment(x: QArray):
repeat(
x.len - 1, lambda i: control(x[0 : x.len - 1 - i], lambda: X(x[x.len - 1 - i]))
)
X(x[0])
@qfunc
def single_step_walk(
coin: QBit, # coin
x: QNum, # position
):
H(coin)
control(coin == 0, lambda: increment(x), lambda: invert(lambda: increment(x))),
from classiq import CustomHardwareSettings, Preferences
preferences = Preferences(
custom_hardware_settings=CustomHardwareSettings(basis_gates=["cx", "u"]),
transpilation_option="custom",
debug_mode=False,
)
Example for getting a data point
start_time = time.time()
@qfunc
def main(x: Output[QNum[SIZE, UNSIGNED, 0]]):
allocate(x)
coin = QBit()
allocate(coin)
single_step_walk(coin, x)
write_qmod(main, "quantum_walk_classiq")
qprog = synthesize(main, constraints=constraints, preferences=preferences)
compilation_time = time.time() - start_time
width = qprog.data.width
depth = qprog.transpiled_circuit.depth
cx_counts = qprog.transpiled_circuit.count_ops["cx"]
print(f"==== classiq for {SIZE}==== time {compilation_time}")
==== classiq for 6==== time 16.50112295150757