Minimum and Maximum
The minimum and maximum operators determine the smallest and largest input, respectively. Both functions receive two inputs. Each may be a fixed point number or a quantum register.
Examples
Example 1: Two Quantum Variables Minimum
This code example generates a quantum program that returns a minimum of two arguments. Both the left and right arguments are defined as quantum variables of size three.
from classiq import *
from classiq.qmod.symbolic import min
@qfunc
def main(a: Output[QNum], b: Output[QNum], res: Output[QNum]) -> None:
prepare_int(4, a)
allocate(3, b)
hadamard_transform(b)
res |= min(a, b)
qmod = create_model(main, out_file="minimum_2vars_example")
qprog = synthesize(qmod)
result = execute(qprog).result_value()
result.parsed_counts
[{'a': 4.0, 'b': 1.0, 'res': 1.0}: 136,
{'a': 4.0, 'b': 7.0, 'res': 4.0}: 129,
{'a': 4.0, 'b': 6.0, 'res': 4.0}: 126,
{'a': 4.0, 'b': 4.0, 'res': 4.0}: 125,
{'a': 4.0, 'b': 2.0, 'res': 2.0}: 122,
{'a': 4.0, 'b': 3.0, 'res': 3.0}: 122,
{'a': 4.0, 'b': 5.0, 'res': 4.0}: 122,
{'a': 4.0, 'b': 0.0, 'res': 0.0}: 118]
Example 2: Float and Quantum Variable Maximum
This code example returns a quantum program with a maximum of two arguments. Here, the left arg is a fixed-point number \((11.1)_2\) (3.5), and the right arg is a quantum variable of size three.
from classiq.qmod.symbolic import max
@qfunc
def main(a: Output[QNum], res: Output[QNum]) -> None:
allocate(3, a)
hadamard_transform(a)
res |= max(3.5, a)
qmod = create_model(main, out_file="maximum_float_example")
qprog = synthesize(qmod)
result = execute(qprog).result_value()
result.parsed_counts
[{'a': 5.0, 'res': 5.0}: 135,
{'a': 0.0, 'res': 3.5}: 131,
{'a': 3.0, 'res': 3.5}: 130,
{'a': 6.0, 'res': 6.0}: 129,
{'a': 2.0, 'res': 3.5}: 127,
{'a': 7.0, 'res': 7.0}: 122,
{'a': 1.0, 'res': 3.5}: 115,
{'a': 4.0, 'res': 4.0}: 111]