Skip to content

Minimum Dominating Set (MDS) Problem

View on GitHub Experiment in the IDE

The Minimum Dominating Set problem [1] is a classical NP-hard problem in computer science and graph theory. In this problem, we are given a graph, and we aim to find the smallest subset of vertices such that every node in the graph is either in the subset or is a neighbor of a node in the subset.

We represent the problem as a binary optimization problem.

Variables:

  • \(x_i\) binary variables that represent whether a node \(i\) is in the dominating set or not.

Constraints:

  • Every node \(i\) is either in the dominating set or connected to a node in the dominating set:

\(\forall i \in V: x_i + \sum_{j \in N(i)} x_j \geq 1\)

Where \(N(i)\) represents the neighbors of node \(i\).

Objective

  • Minimize the size of the dominating set:

\(\sum_{i\in V}x_i\)

Solving with the Classiq platform

We go through the steps of solving the problem with the Classiq platform, using QAOA algorithm [2]. The solution is based on defining a pyomo model for the optimization problem we would like to solve.

import networkx as nx
import numpy as np
import pyomo.core as pyo
from matplotlib import pyplot as plt

Building the Pyomo model from a graph input

We proceed by defining the pyomo model that will be used on the Classiq platform, using the mathematical formulation defined above:

def mds(graph: nx.Graph) -> pyo.ConcreteModel:
    model = pyo.ConcreteModel()
    model.x = pyo.Var(graph.nodes, domain=pyo.Binary)

    @model.Constraint(graph.nodes)
    def dominating_rule(model, idx):
        sum_of_neighbors = sum(model.x[neighbor] for neighbor in graph.neighbors(idx))
        return model.x[idx] + sum_of_neighbors >= 1

    model.cost = pyo.Objective(expr=sum(model.x.values()), sense=pyo.minimize)

    return model

The model contains:

  • Index set declarations (model.Nodes, model.Arcs).

  • Binary variable declaration for each node (model.x) indicating whether that node is chosen for the set.

  • Constraint rule – for each node, it must be a part of the chosen set or be neighbored by one.

  • Objective rule – the sum of the variables equals the set size.

# generate a random graph
G = nx.erdos_renyi_graph(n=6, p=0.6, seed=8)
nx.draw_kamada_kawai(G, with_labels=True)

mds_model = mds(G)

png

mds_model.pprint()
2 Set Declarations
    dominating_rule_index : Size=1, Index=None, Ordered=False
        Key  : Dimen : Domain : Size : Members
        None :     1 :    Any :    6 : {0, 1, 2, 3, 4, 5}
    x_index : Size=1, Index=None, Ordered=False
        Key  : Dimen : Domain : Size : Members
        None :     1 :    Any :    6 : {0, 1, 2, 3, 4, 5}

1 Var Declarations
    x : Size=6, Index=x_index
        Key : Lower : Value : Upper : Fixed : Stale : Domain
          0 :     0 :  None :     1 : False :  True : Binary
          1 :     0 :  None :     1 : False :  True : Binary
          2 :     0 :  None :     1 : False :  True : Binary
          3 :     0 :  None :     1 : False :  True : Binary
          4 :     0 :  None :     1 : False :  True : Binary
          5 :     0 :  None :     1 : False :  True : Binary

1 Objective Declarations
    cost : Size=1, Index=None, Active=True
        Key  : Active : Sense    : Expression
        None :   True : minimize : x[0] + x[1] + x[2] + x[3] + x[4] + x[5]

1 Constraint Declarations
    dominating_rule : Size=6, Index=dominating_rule_index, Active=True
        Key : Lower : Body                             : Upper : Active
          0 :   1.0 :        x[1] + x[3] + x[5] + x[0] :  +Inf :   True
          1 :   1.0 :        x[0] + x[2] + x[4] + x[1] :  +Inf :   True
          2 :   1.0 : x[1] + x[3] + x[4] + x[5] + x[2] :  +Inf :   True
          3 :   1.0 :        x[0] + x[2] + x[4] + x[3] :  +Inf :   True
          4 :   1.0 : x[1] + x[2] + x[3] + x[5] + x[4] :  +Inf :   True
          5 :   1.0 :        x[0] + x[2] + x[4] + x[5] :  +Inf :   True

5 Declarations: x_index x dominating_rule_index dominating_rule cost

Setting Up the Classiq Problem Instance

In order to solve the Pyomo model defined above, we use the CombinatorialProblem quantum object. Under the hood it tranlastes the Pyomo model to a quantum model of the QAOA algorithm, with a cost function translated from the Pyomo model. We can choose the number of layers for the QAOA ansatz using the argument num_layers, and the penalty_factor, which will be the coefficient of the constraints term in the cost hamiltonian.

from classiq import *
from classiq.applications.combinatorial_optimization import CombinatorialProblem

combi = CombinatorialProblem(pyo_model=mds_model, num_layers=6, penalty_factor=10)

qmod = combi.get_model()
write_qmod(qmod, "minimum_dominating_set")

Synthesizing the QAOA Circuit and Solving the Problem

We can now synthesize and view the QAOA circuit (ansatz) used to solve the optimization problem:

qprog = combi.get_qprog()
show(qprog)
Opening: https://platform.classiq.io/circuit/2uni9DhUGnElonQI7CJ3VnTl921?login=True&version=0.72.1

We now solve the problem by calling the optimize method of the CombinatorialProblem object. For the classical optimization part of the QAOA algorithm we define the maximum number of classical iterations (maxiter) and the \(\alpha\)-parameter (quantile) for running CVaR-QAOA, an improved variation of the QAOA algorithm [3]:

optimized_params = combi.optimize(maxiter=70, quantile=0.7)
Optimization Progress: 71it [09:18,  7.87s/it]

We can check the convergence of the run:

import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=1, ncols=1)
axes.plot(combi.cost_trace)
axes.set_xlabel("Iterations")
axes.set_ylabel("Cost")
axes.set_title("Cost convergence")
Text(0.5, 1.0, 'Cost convergence')

png

Optimization Results

We can also examine the statistics of the algorithm. In order to get samples with the optimized parameters, we call the get_results method:

optimization_result = combi.sample(optimized_params)
optimization_result.sort_values(by="cost").head(5)
solution probability cost
1376 {'x': [0, 1, 0, 1, 0, 1], 'dominating_rule_0_s... 0.000488 3.0
67 {'x': [0, 1, 1, 0, 1, 0], 'dominating_rule_0_s... 0.000488 3.0
1588 {'x': [0, 1, 0, 1, 1, 0], 'dominating_rule_0_s... 0.000488 3.0
301 {'x': [0, 1, 0, 1, 1, 0], 'dominating_rule_0_s... 0.000488 3.0
1293 {'x': [1, 1, 0, 1, 0, 1], 'dominating_rule_0_s... 0.000488 4.0

We will also want to compare the optimized results to uniformly sampled results:

uniform_result = combi.sample_uniform()

And compare the histograms:

optimization_result["cost"].plot(
    kind="hist",
    bins=50,
    edgecolor="black",
    weights=optimization_result["probability"],
    alpha=0.6,
    label="optimized",
)
uniform_result["cost"].plot(
    kind="hist",
    bins=50,
    edgecolor="black",
    weights=uniform_result["probability"],
    alpha=0.6,
    label="uniform",
)
plt.legend()
plt.ylabel("Probability", fontsize=16)
plt.xlabel("cost", fontsize=16)
plt.tick_params(axis="both", labelsize=14)

png

Let us plot the solution:

best_solution = optimization_result.solution[optimization_result.cost.idxmin()]
best_solution
{'x': [0, 1, 1, 0, 1, 0],
 'dominating_rule_0_slack_var': [0, 0],
 'dominating_rule_1_slack_var': [0, 1],
 'dominating_rule_2_slack_var': [0, 1, 0],
 'dominating_rule_3_slack_var': [1, 0],
 'dominating_rule_4_slack_var': [0, 1, 0],
 'dominating_rule_5_slack_var': [1, 0]}
def draw_solution(graph: nx.Graph, solution: list):
    solution_nodes = [v for v in graph.nodes if solution[v]]
    solution_edges = [
        (u, v) for u, v in graph.edges if u in solution_nodes or v in solution_nodes
    ]
    nx.draw_kamada_kawai(graph, with_labels=True)
    nx.draw_kamada_kawai(
        graph,
        nodelist=solution_nodes,
        edgelist=solution_edges,
        node_color="r",
        edge_color="y",
    )


draw_solution(G, [best_solution["x"][i] for i in range(len(best_solution["x"]))])

png

Lastly, we can compare to the classical solution of the problem:

from pyomo.opt import SolverFactory

solver = SolverFactory("couenne")
solver.solve(mds_model)

mds_model.display()
classical_solution = [int(pyo.value(mds_model.x[i])) for i in G.nodes]
Model unknown

  Variables:
    x : Size=6, Index=x_index
        Key : Lower : Value : Upper : Fixed : Stale : Domain
          0 :     0 :   1.0 :     1 : False : False : Binary
          1 :     0 :   0.0 :     1 : False : False : Binary
          2 :     0 :   0.0 :     1 : False : False : Binary
          3 :     0 :   1.0 :     1 : False : False : Binary
          4 :     0 :   0.0 :     1 : False : False : Binary
          5 :     0 :   0.0 :     1 : False : False : Binary

  Objectives:
    cost : Size=1, Index=None, Active=True
        Key  : Active : Value
        None :   True :   2.0

  Constraints:
    dominating_rule : Size=6
        Key : Lower : Body : Upper
          0 :   1.0 :  2.0 :  None
          1 :   1.0 :  1.0 :  None
          2 :   1.0 :  1.0 :  None
          3 :   1.0 :  2.0 :  None
          4 :   1.0 :  1.0 :  None
          5 :   1.0 :  1.0 :  None
draw_solution(G, classical_solution)

png

References

[1]: Dominating Set (Wikipedia)

[2]: Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm." arXiv preprint arXiv:1411.4028 (2014).

[3]: Barkoutsos, Panagiotis Kl, et al. "Improving variational quantum optimization using CVaR." Quantum 4 (2020): 256.